High Impact Measures to Boost Data Center Efficiency (Part 2)

While typical energy audits focus on the mechanical and electrical infrastructure, in data
centers the facility framework is only one factor in the cost equation. Often times improving in other areas can be even more rewarding. For example, consideration of the actual kilowatts consumed by servers and other IT hardware is crucial when examining energy efficiency in a data center.

Data processing equipment accounts for most of the energy consumption in a data center, and because of this, facility executives really need to start by thinking ‘inside the box’.  Best practices in the type, usage, and configuration of deployment all can significantly reduce the overall energy needs for this equipment.

Pull the Plug on Idle Servers

It’s a simple concept really, if it’s not doing anything, unplug it.  However, in many data centers, up to 15% of the servers should be decommissioned and yet are left running for no other reason than lack of drive to clean up outdated equipment.  Some estimates indicate that the cost of each idle server can exceed $1,000 annually when considering total data center energy usage.  That’s a lot of wasted capital!  Addressing the issue can have an immediate impact on the bottom line.

The solution is to establish a rigorous program to decommission obsolete hardware.

Maintaining an asset management database is a necessity to help enterprises ensure that they are consuming resources efficiently. This database should contain accurate, up-to-date information on server location and configuration, enabling IT staff to easily identify variables of power, cooling, and available rack space when planning future server and storage deployments and identifying potential systems to retire.

Upgrade to Energy Efficient Servers

Another simple measure to reducing energy consumption is to buy more energy-efficient
servers.  The bulk of IT departments ignore energy efficiency ratings when selecting new hardware, focusing on performance and up-front costs rather than total cost of ownership.  However, if just one server uses 50 watts less than another it will equate to a savings of more than $250 over a three year period, and an even more profound savings of $1,500+ on facility infrastructure expenditures can be realized.

Data processing equipment all rely on power supplies to take incoming power to the
device and distribute it accordingly throughout its internal components as
required. These power supplies are typically specified by the manufacturer to
provide for the worse case conditions of the device under a maximized
configuration. In the past, these power supplies typically were rated far
beyond the components capabilities to provide a “safety factor” in the device.
As more pressure is being brought to the forefront on energy efficiency in
computing, manufacturers have been striving to match their power supplies more
closely to the components capabilities, or power parity.

One of the more power consuming components in most IT processing equipment are the
fans required to provide air for proper cooling internally within the equipment. These fans run continuously as long as the device is running. Both equipment and chip manufacturers have been making strides to better pair fan use with actual equipment needs. As chip development continues, heat tolerance is being increased.  Also, fans are being created which can be run in stages depending on the processing load of the equipment. This means that fans can run at lower speeds when processing is at a lower state, thus consuming less power.

Processing equipment developed within the last 3-5 years (depending on the manufacturer) is likely to be relatively energy efficient, anything older than that certainly
should be evaluated.

Consolidate and Virtualize

Another “low-hanging fruit” in many data centers is server consolidation and
virtualization. Typical utilization rates for non-virtualized servers is measured
between 5 and 10 percent of their total physical capacity, wasting hardware,
space, and electricity.  By moving to virtualized servers, data centers will be fully supported with less hardware, resulting in lower equipment costs, lower electrical consumption (thanks to reduced server power and cooling), and less physical space required to house the server farm.

It is important to remember that not all applications and servers are good candidates
for virtualization which adds complexity to the endeavor.

Along with consolidated server applications, associated storage for these systems is also becoming more consolidated as well. Storage Area Networks (SAN) and Network Attached Storage (NAS) solutions are becoming the norm in data center typologies. Virtualized tape systems are also replacing larger tape storage devices of the past. As these systems become
more regularized, they have also been increasing in density. This allows more storage in the same footprint with only marginal increases in energy consumption. The advent of solid state storage devices (SSD’s) will likely only create higher densities with lower overall power consumption in the future. Although these devices are not yet in production on central storage equipment, it will only be a matter of time before they are utilized.

The Bottom Line

A comprehensive efficiency strategy that targets IT processing equipment in addition to other tactics can substantially reduce energy consumption and net large savings. A facility-wide energy audit from an experienced partner will help to identify the areas where the most immediate impact can be achieved.

High Impact Measures to Boost Data Center Efficiency (Part 3)

Energy efficiency in electrical systems can be achieved through some measures to limit losses through devices among these components. Power parity (the amount of power put into a device equaling the amount of power provided to the device) provides for the most efficient use of power. Transformers and equipment which utilize transformers (such as UPS systems and PDU’s) tend to have some losses in efficiency due to the friction losses in the windings of these transformers. As equipment vendors apply more stringent manufacturing techniques to their products, improvements can be made to efficiencies of this type of equipment. UPS vendors now provide UPS systems which operate at a .95 or higher power factor. This means that there is only a 5% loss of power into the device
compared to power supplied by the device. It should be noted that these power factors are generally based on a load limit on the device no lower than around 30% of the rated maximum for the device, although some of the newer UPS systems can maintain their power factor down to as low as 20% of the rated maximum. As equipment is replaced due to changes in a system, end of life, or equipment failure, higher efficiency equipment should be specified and provided to improve on energy efficiency for these systems.

Measurement and Recording Data

We mentioned in part 1 of this series that in order to understand the consumption of power related to the data center, metering of these systems needs to be provided. Further, trending of this information is invaluable to understanding a baseline of energy use as well as the outcome of changes implemented to improve efficiency. The Power Usage Effectiveness (PUE) of the systems is an indicator of how efficient the data center operates. It is very important to understand where your data center ranks for PUE in order to know what measures should be taken to improve efficiency. This means that recording power usage at the main switchgear supporting both the electrical and mechanical equipment supplying the data center, and at the distribution side of the UPS systems distribution
(preferably at the 120/208 volt level at the PDU’s) is ideal to achieve the simplest means of calculating the PUE.

Lighting

Lighting systems have been moving towards more energy efficient components in recent years.  These systems have moved away from the use of incandescent and T12 luminaires to compact fluorescent and LED fixtures. ENERGY STAR has reported savings of 42% by switching from T12 fluorescent luminaires with magnetic ballasts to high efficiency T8 luminaires with electronic ballasts. It should be noted that oftentimes these higher efficiency luminaires actually produce higher lighting levels in addition to using less power. The more recent introduction of LED lighting luminaires, which can be retrofit into current fluorescent fixtures, is driving these efficiencies even higher.

Lighting Controls

Another energy savings measure which can be implemented in the data center is lighting controls. The notion of “lights out” data center operations refers to personnel not being normally stationed in the data center space. As operational controls of data processing applications become more network driven, and remotely accessed, less time is required in the data center to perform these activities. As a result of this reduced time spent in the data center, lighting becomes less necessary to operate under non-manned periods. Lighting controls utilizing occupancy sensors as a means of controlling lighting offers a reasonable solution to taking control of shutting off the lights out of the personnel entering and using the space. However, occupancy sensors do not allow for continued presence in the space when personnel are out of sensory contact with a motion or occupancy sensor due to working within or at the lower portions of equipment racks. In order to better accommodate these specialized circumstances in the data center, a combination of occupancy/motion sensors in conjunction with card access systems allows for a highly effective and efficient lighting controls strategy.

The Bottom Line

Once the proper metering components are in place and baselines are established, it’s relatively simple to determine which electrical infrastructure equipment will benefit from an upgrade and what the payback for the investment will be.  Also, paying attention to lighting controls can improve energy efficiency in the data center.  No matter what the situation is in your data center, a facility-wide energy audit from an experienced partner will help to identify the areas where the most immediate impact can be achieved.